# Multiply fractions: 5/17 × - 83/4 = ? Multiplication result of the ordinary (simple, common) fractions explained

## The latest fractions multiplied

 5/17 × - 83/4 = ? Oct 29 22:31 UTC (GMT) - 9/627 × - 28/15 = ? Oct 29 22:31 UTC (GMT) - 165,918/12,012 × 3,162/165,920 = ? Oct 29 22:31 UTC (GMT) - 20/6 × 44/3 × 3,849/5 × 5,988/7 × - 48/5 × 51/7 × - 47/5 × 33/151 = ? Oct 29 22:31 UTC (GMT) 96/83 × - 5,757/36 × 5,764/34 × - 5,218/28 × - 516,882/88 = ? Oct 29 22:31 UTC (GMT) - 63/13 × - 46/73 = ? Oct 29 22:31 UTC (GMT) - 437/75 × 7,181/37 × - 7,190/53 × - 7,254/41 × - 719,690/422 = ? Oct 29 22:31 UTC (GMT) 31/39 × - 22/36 = ? Oct 29 22:30 UTC (GMT) 28/69 × 132/24 = ? Oct 29 22:30 UTC (GMT) - 6/8 × 3/12 = ? Oct 29 22:30 UTC (GMT) 15/77 × - 59/16 = ? Oct 29 22:30 UTC (GMT) 19/30 × 122/19 = ? Oct 29 22:30 UTC (GMT) 2 × 5 × - 2 × 5 × - 600 = ? Oct 29 22:30 UTC (GMT) see more... ordinary (common) fractions multiplied by users

## How to multiply two fractions?

#### When we multiply ordinary fractions, the end fraction will have:

• as a numerator, the result of multiplying all the numerators of the fractions,
• as a denominator, the result of multiplying all the denominators of the fractions.
• a/b × c/d = (a × c) / (b × d)
• a, b, c, d are integer numbers;
• if the pairs (a × c) and (b × d) are not coprime (they have common prime factors) the end fraction should be reduced (simplified) to lower terms.

### How to multiply ordinary fractions? Steps.

• Start by reducing fractions to lower terms (simplifying).
• Reduce math fractions to lower terms, online, with explanations.
• Factor the numerators and the denominators of the reduced fractions: break them down to their prime factors.
• Calculate the prime factors of numbers, online calculator
• Above the fraction bar we write the product of all the prime factors of the fractions' numerators, without doing any calculations.
• Below the fraction bar we write the product of all the prime factors of the fractions' denominators, without doing any calculations.
• Cross out all the common prime factors that appear both above and below the fraction bar.
• Multiply the remaining prime factors above the fraction bar - this will be the numerator of the resulted fraction.
• Multiply the remaining prime factors below the fraction bar - this will be the denominator of the resulted fraction.
• There is no need to reduce (simplify) the resulting fraction, since we have already crossed out all the common prime factors.
• If the resulted fraction is an improper one (without considering the sign, the numerator is larger than the denominator), it could be written as a mixed number, consisting of an integer and a proper fraction of the same sign.
• Write improper fractions as mixed numbers, online.
• Multiply ordinary fractions, online, with explanations.