Menu Compare and sort in ascending order the set of the ordinary fractions: ^{26} /_{54} , ^{49} /_{26} , ^{54} /_{31} , ^{449} /_{48} . Ordinary fractions compared and sorted in ascending order, result explained below

Sort: ^{26} /_{54} , ^{49} /_{26} , ^{54} /_{31} , ^{449} /_{48}

The operation of sorting fractions in ascending order: ^{26} /_{54} , ^{49} /_{26} , ^{54} /_{31} , ^{449} /_{48} Analyze the fractions to be compared and ordered, by category:

1 positive proper fraction: ^{26} /_{54} ; positive improper fractions: ^{49} /_{26} , ^{54} /_{31} , ^{449} /_{48} ; How to sort and order fractions by categories:

Any positive proper fraction is smaller than any positive improper fraction Sort the positive improper fractions: ^{49} /_{26} , ^{54} /_{31} , ^{449} /_{48}

Reduce (simplify) fractions to their lowest terms equivalents:

^{49} /_{26} already reduced to the lowest terms; the numerator and denominator have no common prime factors: 49 = 7^{2} ; 26 = 2 × 13; ^{54} /_{31} already reduced to the lowest terms; the numerator and denominator have no common prime factors: 54 = 2 × 3^{3} ; 31 is a prime number; ^{449} /_{48} already reduced to the lowest terms; the numerator and denominator have no common prime factors: 449 is a prime number; 48 = 2^{4} × 3; To sort fractions in ascending order, build up their denominators the same. Calculate LCM, the least common multiple of the denominators of the fractions. LCM will be the common denominator of the compared fractions. In this case, LCM is also called LCD, the least common denominator.

The prime factorization of the denominators: 26 = 2 × 13 31 is a prime number 48 = 2^{4} × 3 Multiply all the unique prime factors, by the largest exponents: LCM (26 , 31 , 48 ) = 2^{4} × 3 × 13 × 31 = 19,344

Calculate the expanding number of each fraction

Divide LCM by the denominator of each fraction: For fraction: ^{49} /_{26} is 19,344 ÷ 26 = (2^{4} × 3 × 13 × 31) ÷ (2 × 13) = 744 For fraction: ^{54} /_{31} is 19,344 ÷ 31 = (2^{4} × 3 × 13 × 31) ÷ 31 = 624 For fraction: ^{449} /_{48} is 19,344 ÷ 48 = (2^{4} × 3 × 13 × 31) ÷ (2^{4} × 3) = 403 Expand the fractions Build up all the fractions to the same denominator (which is LCM). Multiply the numerators and denominators by their expanding number:

^{49} /_{26} = ^{(744 × 49)} /_{(744 × 26)} = ^{36,456} /_{19,344} ^{54} /_{31} = ^{(624 × 54)} /_{(624 × 31)} = ^{33,696} /_{19,344} ^{449} /_{48} = ^{(403 × 449)} /_{(403 × 48)} = ^{180,947} /_{19,344} The fractions have the same denominator, compare their numerators. The larger the numerator the larger the positive fraction. The fractions sorted in ascending order: ^{33,696} /_{19,344} < ^{36,456} /_{19,344} < ^{180,947} /_{19,344} The initial fractions in ascending order: ^{54} /_{31} < ^{49} /_{26} < ^{449} /_{48} ::: Comparing operation ::: The final answer:

Positive improper fractions, in ascending order: ^{54} /_{31} < ^{49} /_{26} < ^{449} /_{48} All the fractions sorted in ascending order: ^{26} /_{54} < ^{54} /_{31} < ^{49} /_{26} < ^{449} /_{48} More operations of this kind: Symbols: / fraction bar; ÷ divide; × multiply; + plus; - minus; = equal; < less than; Compare and sort ordinary fractions, online calculator

The latest fractions compared and sorted in ascending order - ^{259} /_{736} and - ^{263} /_{746} ? Sep 19 08:51 UTC (GMT) ^{26} /_{54} , ^{49} /_{26} , ^{54} /_{31} , ^{449} /_{48} ? Sep 19 08:51 UTC (GMT) ^{92} /_{55} , ^{51} /_{85} , ^{54} /_{109} ? Sep 19 08:51 UTC (GMT) - ^{19} /_{40} , - ^{24} /_{49} , - ^{25} /_{45} ? Sep 19 08:51 UTC (GMT) - ^{86} /_{46} , - ^{60} /_{66} , - ^{53} /_{99} , - ^{56} /_{233} ? Sep 19 08:51 UTC (GMT) ^{6} /_{14} and ^{10} /_{21} ? Sep 19 08:51 UTC (GMT) - ^{111} /_{170} , - ^{105} /_{156} , - ^{121} /_{175} , - ^{108} /_{160} ? Sep 19 08:51 UTC (GMT) ^{24} /_{96} and ^{32} /_{106} ? Sep 19 08:51 UTC (GMT) - ^{76} /_{117} , - ^{79} /_{129} , - ^{69} /_{114} , - ^{70} /_{129} ? Sep 19 08:51 UTC (GMT) - ^{22} /_{31} , - ^{33} /_{26} , - ^{312} /_{23} ? Sep 19 08:51 UTC (GMT) - ^{57} /_{70} , - ^{49} /_{69} , - ^{34} /_{67} ? Sep 19 08:51 UTC (GMT) - ^{456} /_{1,015} and - ^{466} /_{1,022} ? Sep 19 08:51 UTC (GMT) - ^{47} /_{20} , - ^{19} /_{46} , - ^{18} /_{30} ? Sep 19 08:51 UTC (GMT) see more... compared fractions see more... sorted fractions

Tutoring: Comparing ordinary fractions How to compare two fractions?
1. Fractions that have different signs: Any positive fraction is larger than any negative fraction: ie: ^{4} /_{25} > - ^{19} /_{2}
2. A proper and an improper fraction: Any positive improper fraction is larger than any positive proper fraction: ie: ^{44} /_{25} > 1 > ^{19} /_{200} Any negative improper fraction is smaller than any negative proper fraction: ie: - ^{44} /_{25} < -1 < - ^{19} /_{200}
3. Fractions that have both like numerators and denominators: The fractions are equal: ie: ^{89} /_{50} = ^{89} /_{50} 4. Fractions that have unlike (different) numerators but like (equal) denominators. Positive fractions : compare the numerators, the larger fraction is the one with the larger numerator: ie: ^{24} /_{25} > ^{19} /_{25} Negative fractions : compare the numerators, the larger fraction is the one with the smaller numerator: ie: - ^{19} /_{25} < - ^{17} /_{25}
5. Fractions that have unlike (different) denominators but like (equal) numerators.
Positive fractions : compare the denominators, the larger fraction is the one with the smaller denominator: ie: ^{24} /_{25} > ^{24} /_{26} Negative fractions : compare the denominators, the larger fraction is the one with the larger denominator: ie: - ^{17} /_{25} < - ^{17} /_{29}
6. Fractions that have different denominators and numerators (unlike denominators and numerators).
To compare them, fractions should be built up to the same denominator (or if it's easier, to the same numerator). More on ordinary (common) math fractions theory: